MGclus: network clustering employing shared neighbors
نویسندگان
چکیده
منابع مشابه
MGclus: network clustering employing shared neighbors.
Network analysis is an important tool for functional annotation of genes and proteins. A common approach to discern structure in a global network is to infer network clusters, or modules, and assume a functional coherence within each module, which may represent a complex or a pathway. It is however not trivial to define optimal modules. Although many methods have been proposed, it is unclear wh...
متن کاملClustering Using a Similarity Measure Based on Shared Near Neighbors
A nonparametric clustering technique incorporating the concept of similarity based on the sharing of near neighbors is presented. In addition to being an essentially paraliel approach, the computational elegance of the method is such that the scheme is applicable to a wide class of practical problems involving large sample size and high dimensionality. No attempt is made to show how a priori pr...
متن کاملNearest-neighbors medians clustering
We propose a nonparametric cluster algorithm based on local medians. Each observation is substituted by its local median and this new observation moves toward the peaks and away from the valleys of the distribution. The process is repeated until each observation converges to a fixpoint. We obtain a partition of the sample based on the convergence points. Our algorithm determines the number of c...
متن کاملFast reciprocal nearest neighbors clustering
This paper presents a novel approach for accelerating the popular Reciprocal Nearest Neighbors (RNN) clustering algorithm, i.e. the fast-RNN. We speed up the nearest neighbor chains construction via a novel dynamic slicing strategy for the projection search paradigm. We detail an efficient implementation of the clustering algorithm along with a novel data structure, and present extensive experi...
متن کاملAn Adaptive Spectral Clustering Algorithm Based on the Importance of Shared Nearest Neighbors
The construction of a similarity matrix is one significant step for the spectral clustering algorithm; while the Gaussian kernel function is one of the most common measures for constructing the similarity matrix. However, with a fixed scaling parameter, the similarity between two data points is not adaptive and appropriate for multi-scale datasets. In this paper, through quantitating the value ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular BioSystems
سال: 2013
ISSN: 1742-206X,1742-2051
DOI: 10.1039/c3mb25473a